CAP CO2’s focus is the use anthropogenic CO2 for enhanced oil recovery, with concurrent carbon storage.
Outline – Growing Opportunities

1. Geologic sequestration
 • A key alternative
 • Costs
 • Kansas geology suitability and capacity
 • Kansas projects

2. Interim solution: Concurrent Enhanced Oil Recovery (EOR) and Carbon Capture and Storage (CCS)
 • “Green” oil with industrial CO2
 • Technical requirements
 • Kansas opportunities and economic impact
CO₂ Basics

• 1 ton CO₂ = 17.2 mcf
• 1 metric ton = 19 mcf
• An average human exhales 6 mcf CO₂/yr
• Combustion of 1 barrel of oil yields 8 mcf CO₂
• 7 mcf CO₂ / BO (Net utilization: Sequestered)
• Ethanol (55mgy) – 8.3 mmcf/d, 0.16 million tonnes/yr (1-2 mbopd)
• Coffeyville fertilizer plant – 40 mmcf/d, 0.8 million tonnes/yr (6-8 mbopd)
• New Sunflower 895 MW plant deal – 6.7 million tons/yr

Kansas:
• Total 72.8 Million Metric Tons/Year
• Coal-fired Power 37.2 Million Metric Tons/Year

Handy CO₂ properties calculator:
http://abyss.kgs.ku.edu/pls/abyss/nat
carb.co2_calc.co2_prop

KSU – CHE 670 January 7, 2010
US Stationary CO2 Sources

Kansas
73 Million Tons/Year
Power 37 Million Tons/Year

Carbon legislation
+ Carbon capture
+ Need for geologic storage
+ CO2 pipeline infrastructure
= Opportunity for CCS and CO2 EOR in Kansas

Source: NATCARB, NETL
Seven Wedges to CO2 reduction

Billion of Tons of Carbon Emitted per Year

14 GtC/y

Geologic Sequestration Wedge

Historical emissions

Currently projected path

Flat path

KSU – CHE 670 January 7, 2010

Graphic: Socolow & Pacala
• Accumulated total reflection amplitude from all nine layers of the Sleipner CO2 plume.

• I am not sure how much had been injected in 2006, but as of 2008 ~10 M tons had been injected.

• Sleipner project is about the size of some Arbuckle “domes” on the CKU.
Kansas CO2 EOR and CCS studies and proposed projects

KGS and TORP (KU) - successful Russell CO2 pilot project (99-09)

Gas Oil & Gas

KGS 5-yr DOE-funded study area

KGS 5

Gas
Oil & Gas
Oil

DOE-funded study area

CAP CO2, Blue Source et al – Phase I DOE study. Two sources, multiple sinks

KSU – CHE 670 January 7, 2010

Arbuckle EOR and CCS target

Geneseo-Edwards field could store >8.5 million tons CO2
Arbuckle injection rates and sequestration

Injectivity Documented

- 2000 SWDW in Arbuckle in Kansas
- 3-5,000 BWPD common; some >10,000 BWPD, on a vacuum.
- 100 - 350 metric tons/day, (37 - 130 k metric tons/yr)
- 50 -175 injection wells for the planned 850MW Sunflower plant
- 1-3 wells for a 55mgy ethanol plant

(CO2 properties at 110F and 1100psi – supercritical, 13.8 lbs/ft^3, and 0.22 gm/cc)

Storage space available

A Single Example: Ellsworth anticline (saline aquifer)

- 126 square miles (6X21 mi)
- 100 ft of closure
- 15% porosity
- Sw = 100%
- Store 278 million metric tons supercritical displacement
- 66 million metric tons as dissolved gas

(Assumed 100F, 1200psi, TDS = 30,000 ppm)

Carr, et al. (2005)
Volumetric estimates for storing CO2 in Arbuckle domes on CKU

<table>
<thead>
<tr>
<th>FIELD</th>
<th>DISC YR</th>
<th>CUM. OIL (mmbo)</th>
<th>CO2 REPLACE OIL</th>
<th>CO2 TO SPILL (~2.5X*)</th>
</tr>
</thead>
<tbody>
<tr>
<td>TRAPP</td>
<td>1929</td>
<td>308</td>
<td>11.9</td>
<td>29.8</td>
</tr>
<tr>
<td>CHASE-SILICA</td>
<td>1929</td>
<td>280</td>
<td>10.8</td>
<td>27.0</td>
</tr>
<tr>
<td>BEMIS-SHUTTS</td>
<td>1928</td>
<td>261</td>
<td>10.1</td>
<td>25.3</td>
</tr>
<tr>
<td>HALL-GURNEY</td>
<td>1931</td>
<td>160</td>
<td>6.2</td>
<td>15.5</td>
</tr>
<tr>
<td>KRAFT-PRUSA</td>
<td>1937</td>
<td>137</td>
<td>5.3</td>
<td>13.3</td>
</tr>
<tr>
<td>GORHAM</td>
<td>1926</td>
<td>98</td>
<td>3.8</td>
<td>9.5</td>
</tr>
<tr>
<td>GENESEO-EDWARDS</td>
<td>1934</td>
<td>89</td>
<td>3.4</td>
<td>8.5</td>
</tr>
<tr>
<td>Total</td>
<td>1,333</td>
<td>51.5</td>
<td>128.8</td>
<td></td>
</tr>
</tbody>
</table>

Kansas:
- **Total 72.8 Million** Metric Tons/Year
- **Electric Power 37.2 Million** Metric Tons/Year
- New **Sunflower** 895 MW plant deal – 6.7 million tons/yr (metric tons?)

* Assumptions: Cumulative oil is ~40% OOIP and 28% of pore volume, FVF = 1.1, Swi = 30%, final Sco2 = 70% and reservoir is filled to spill point. CO2 properties at 110F and 1100psi – supercritical, 13.8 lbs/ft^3, and 0.22 gm/cc.
Theoretical CO\textsubscript{2} storage volume in “depleted” Kansas oil and gas reservoirs

Filling only the space vacated by the hydrocarbon

OIL

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Cumulative Production</td>
<td>6.3 Billion BO</td>
</tr>
<tr>
<td>Reservoir Volume</td>
<td>6.93 Billion bbls ((FVF=1.1))</td>
</tr>
<tr>
<td>Reservoir Volume</td>
<td>38.9 BCF</td>
</tr>
<tr>
<td>Tonnes CO\textsubscript{2}</td>
<td>243 million tonnes</td>
</tr>
</tbody>
</table>

GAS

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Cumulative Production</td>
<td>38.4 TCF</td>
</tr>
<tr>
<td>Reservoir Volume</td>
<td>1.12 TCF ((Bg = 34.3))</td>
</tr>
<tr>
<td>Tonnes CO\textsubscript{2}</td>
<td>2,232 million tonnes</td>
</tr>
</tbody>
</table>

* Assumes 110\textdegree F and 1100 psi for average oil reservoir - CKU

13.8 lbs CO\textsubscript{2} / ft3

** Assumes 100\textdegree F and 500 psi for average gas reservoir - Hugoton

4.4 lbs CO\textsubscript{2} / ft3

Kansas:

- Total 72.8 Million Metric Tons/Year
- Electric Power 37.2 Million Metric Tons/Year
- New Sunflower 895 MW plant deal – 6.7 million tons/yr (metric tons?)

KSU – CHE 670 January 7, 2010
Arbuckle as saline aquifer storage

Positives
+ Proven seal
+ Proven injection zone
+ Vast storage capacity
+ Fluid gradients working in our favor (Carr, et al., 2005)
+ Fluid velocities in aquifer are very slow (Jorgensen et al., 1993)

Negatives
- Much is below supercritical
- Existing wellbores may be problematic
- Best structures are still oil productive *

* But….what about concurrent EOR and CCS?
Reality of costs

<table>
<thead>
<tr>
<th>Activity</th>
<th>Cost per Ton CO2 ($)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Capture</td>
<td>0 - 50 (pure vs. coal-power)</td>
</tr>
<tr>
<td>Compression</td>
<td>15 - 20</td>
</tr>
<tr>
<td>Transportation</td>
<td>0 - 20 (on site vs. distant)</td>
</tr>
<tr>
<td>Injection & monitor</td>
<td>5 - 10</td>
</tr>
</tbody>
</table>

$20 - $100 per ton

Present financial incentive to capture and store: $0 - $20*/ton

* $20 tax credit for sequestration for large CO2 sources

Interim solution: “Green Oil”

- 2.8 Barrels of oil recovered ($200 gross value)
- One ton CO2 permanently stored
- Combust 2.8 Barrels of oil yields 1.1 tons CO2
CO2 Retention in EOR

- Historically 50% of CO2 is retained in the reservoir
- The other 50% is captured, recycled and re-injected
- Eventually nearly all is stored, permanently (<5% loss over time)

Anthro-CO2 oil is nearly carbon neutral*
 ✓ 7 mcf CO2 sequestered
 ✓ 8 mcf /barrel oil oxidized

* Excludes, refining, transportation CO2 costs

Long-lived CO2 EOR projects, mainly Permian basin

KSU – CHE 670 January 7, 2010
CO2 storage capacity and mode

Amount of CO2 sequestered depends on temperature, pressure, brine chemistry, hydrocarbon properties, rock chemistry, and pore throat diameters (capillary pressures)

Modes of storage
1. Displacement – \(f(\text{density}) = f(P, T) \)
2. Residual saturation – \(f(\text{pores}) \)
3. Solubility trapping* – \(f(\text{salinity, P, T}) \)
4. Mineralization – \(f(\text{mineralogy, T, brine}) \)

*Noteworthy: Solubility of CO2 in oil is > than in Sw

State of CO2 stored is function of time

Hermanrud, et al. (2009)
CO2 Processing Styles

Horizontal (piston) flood
- Application: Follow waterfloods
- KS targets: L-KC, Bartlesville, Morrow, Chester
- Well documented

Gravity-stable flood
- Application: bottom-water drive reservoirs
- KS targets: Arbuckle, Simpson, Viola
- Fewer analogues
Technical Requirements

Miscible – piston displacement

1. Inject pressure > CO2 in supercritical state (>1073)
2. Inject pressure < frac pressure
3. Reservoir operating pressure > MMP (1200-2000 psi)
4. Adequate working pressure range (Frac pressure – MMP)
5. Adequate Remaining OIP
6. Reservoir conditions allowing contact throughout the reservoir (good waterflood)

Miscible or near-miscible gravity-stable displacement

Same constraints………

• Reservoir BHP above MMP for miscible (for bottom-water drive reservoirs)
• Reservoir conditions & wellbore configuration to build uniformly expanding CO2 gas cap

KSU – CHE 670 January 7, 2010
Minimum Miscibility Pressure

MMP = system pressure at which 90% of lease crude oil in sand-packed slim tube is recovered

MMP’s performed by TORP, KU

API = 37.5°-38.4°

Lansing-KC
Hall-Gurney

Other KS Crudes
Recent Arbuckle
~1350 psi

KSU – CHE 670 January 7, 2010
Miscible floods operate at:
- > supercritical (1073 psi)
- above MMP (MMP > 1200 psi)

Kansas reservoir properties range:
- 400 psi, 85°F at 1000 ft
- 1600 psi, 125°F at 6000 ft
CO2’s operating requirements and reservoir constraints

Target screen dimensions determined by pressure constraints (miscible)
- CO2 supercritical at >1073 psi
- MMP variable, >1200 psi and increases with BHT (depth)
- Frac pressure is upper limit to injection pressure
- High absolute maximum operating pressure range is desirable (Delta P = frac P – MMP)

Density and viscosity varies significantly
from light liquid to heavy super-critical within the range of P & T for surface to BH

Properties from SPE Monograph 22

KSU – CHE 670 January 7, 2010
Relative volume for CO2 under “normal” pressure and temperature conditions. Kansas is under-pressured
Defining Kansas Resource Targets

Pressure constraints (Miscible, Delta P could vary, but generally >300 psi)
- Shallowest ~2000 ft (BHP 800 psi)
 - Can work at shallow depths: low BHT lowers MMP and improved frac P with pressered reservoir.
- Ideal miscible >4000 ft (BHP 1300 psi)

Process rate and uniformity
- Higher Delta P for higher process rate
- Low vertical heterogeneity and good later communication (good sweep efficiency demonstrated by good waterflood)

Large remaining oil in place
- “Critical mass” is required to justify non-oil field capital requirements
- High ROIP per-acre required to justify oil-field capital requirements
- Maximize return on capital

Gravity-stable targets
- High BHP preferred
- High gravity, lower MMP preferred
- Vertical permeability, layering, coning are complicating factors
CO\textsubscript{2} EOR impact in Kansas will be significant…. just how significant will be determined by future events.

- Carbon management legislation and laws (Cap & Trade)
- Geologic storage regulations (Federal and State)
- Kansas oil industry response

Plus the usual underlying fundamentals
- EOR resource base
- Oil price
- Favorable / unfavorable tax environment
Convergence

The CO2 landscape has changed dramatically over the past seven years at the state, regional, and federal level.

1. CO2 emissions is publicly accepted as a significant issue to be dealt with

2. Looming carbon management legislation and laws (Cap & Trade) would be a game-changer

3. Geologic storage regulations are moving forward (Federal and State)

4. Pure CO2 sources increased 4X in Kansas (3 ethanol plants, 1 ammonia plant and 30 mmcf to 10 ethanol plants, 2 ammonia plants 120 mmcf)

5. Technical advancements in CO2 EOR expand targets (gravity-stable, shallower depths, drilling and completion)
Potential CO2 EOR in Kansas

Kansas Cumulative to date: 6.3 Billion Barrels
20% of P&S: 1.2 Billion
KGS upper end technically feasible: 600 Million
Technically feasible (*ARI): 570 Million
More conservative view: 200 Million
Half of that: 100 Million (2.5x annual)

* Kusskraa (ARI), 2006

Costs for 100 million barrels CO2 EOR oil
Capital costs in field $1 Billion
CO2 costs** $1 Billion
Operating costs $1 Billion
Cost of Capital $x Billion

** $1.5/mcf + $0.50/mcf recycle. N/G = 5/10.

Costs could vary significantly. Numbers are intended only for illustrating that significant investment is required.
Impact of Technology on Kansas Oil Production

- Technology
- Demand (wars)
- Oil Price

- WW I
- WW II
- Surface Mapping
- Rotary Bits
- Single-Point Seismic
- Waterfloods
- 3D Seismic
- OPEC Price Spike
- Other CO2
- KS CO2

KSU – CHE 670 January 7, 2010
Why not Kansas?

Mississippi Annual Oil Production

Total Cumulative Oil: 2.387 Billion Barrels (through 2008)

Denbury buys Jackson Dome

Denbury Resources Inc.
Why not Kansas?

- 86 projects
- 237 mbo/d

Laws of physics also apply in Kansas

KSU – CHE 670 January 7, 2010
Current CO2 Used for EOR

<table>
<thead>
<tr>
<th>State/Province (storage location)</th>
<th>Source Type (location)</th>
<th>CO2 Supply MMcfd**</th>
<th>Natural</th>
<th>Anthropogenic</th>
</tr>
</thead>
<tbody>
<tr>
<td>Texas-Utah-New Mexico-Oklahoma</td>
<td>Geologic (Colorado-New Mexico) Gas Processing (Texas)</td>
<td>1,700</td>
<td>110</td>
<td>-</td>
</tr>
<tr>
<td>Colorado-Wyoming</td>
<td>Gas Processing (Wyoming)</td>
<td>-</td>
<td>340</td>
<td></td>
</tr>
<tr>
<td>Mississippi</td>
<td>Geologic (Mississippi)</td>
<td>400</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>Michigan</td>
<td>Ammonia Plant (Michigan)</td>
<td>-</td>
<td>15</td>
<td></td>
</tr>
<tr>
<td>Oklahoma</td>
<td>Fertilizer Plant (Oklahoma)</td>
<td>-</td>
<td>35</td>
<td></td>
</tr>
<tr>
<td>Saskatchewan</td>
<td>Coal Gasification (North Dakota)</td>
<td>-</td>
<td>145</td>
<td></td>
</tr>
<tr>
<td>TOTAL</td>
<td></td>
<td>2,100</td>
<td>645</td>
<td></td>
</tr>
</tbody>
</table>

** MMcfd of CO2 can be converted to million metric tons per year by first multiplying by 365 (days per year) and then dividing by 18.9 * 10^3 (Mcf per metric ton).

Kuuskraa, ARI - 2008

Kansas currently vents **120 mmcfd** of high purity CO2 from Ethanol and Fertilizer plants *(EOR potential12-25 mbo/d)*
Kansas Strengths and Challenges for CO2 EOR CCS Development

Kansas strengths

- Significant oil resource base
- Well-defined, large sequestration targets
- CO2 sources: Local and regional
- Head start on regulatory framework
- Favorable relationships with research groups (TORP and KGS)
- Strong industry and professional groups (KIOGA, KGS (all of them), SPE)
- Long-standing intercompany relationships
- Skilled workforce

Challenges - Kansas

- Resource base – needs to be validated
- High % of wells are plugged and many pose a risk to containment
- Resources are unconsolidated
- Missing CO2 EOR skill sets
- Capital
- Tendency to be late adopters

Challenges - Federal and State

- Philosophical and Regulatory hurdles (CCS vs. EOR)
- Regulatory framework still in developmental stage

KSU – CHE 670 January 7, 2010
Kansas Oil’s next generation?

1. Recognize opportunity
2. Understand the challenges
3. Proactive in molding public acceptance and regulatory framework
4. Take the long view, *but* be early adopters
5. Willingness to collaborate and cooperate

END